Enrolment No

GUJARAT TECHNOLOGICAL UNIVERSITY

BE-SEMESTER- 2nd • EXAMINATION – SUMMER 2018

Subject Code:110015 Date: 17-05-2018

Subject Name: Vector Calculus and Linear Algebra

Time: 02:30 pm to 05:30 pm Total Marks: 70

Instructions:

1. Attempt any five questions.

- 2. Make suitable assumptions wherever necessary.
- 3. Figures to the right indicate full marks.

Q-1

(a) If $A = \begin{bmatrix} 1 & 0 & 0 \\ 5 & 2 & 0 \\ 12 & 15 & 3 \end{bmatrix}$ then find the eigen values of A and hence find eigen values

of A^5 and A^{-1} .

- Prove that $A = \begin{bmatrix} 1 & 3+4i & -2i \\ 3-4i & 2 & 9-7i \\ 2i & 9+7i & 3 \end{bmatrix}$ is a Hermitian matrix.
- (b) 1 Solve the following system of equations

$$x + 5y = 2$$

$$11x + y + 2z = 3$$

$$x + 5y + 2z = 1$$

Using Gauss elimination method

2 Determine whether or not vectors (1, -2, 1), (2, 1, -1), (7, -4, 1) in \mathbb{R}^3 are 3 linearly independent.

Q-2

(a) 1 Investigate for what values of λ and μ the equations

$$x + y + z = 6$$

$$x + 2y + 3z = 10$$

$$x+2y+\,\lambda\,z=\,\mu$$

have (i) a unique solution (ii) no solution

4

4

- 2 Obtain the reduced row echelon form of the matrix $A = \begin{bmatrix} 1 & 3 & 2 & 2 \\ 1 & 2 & 1 & 3 \\ 2 & 4 & 3 & 4 \\ 3 & 7 & 4 & 8 \end{bmatrix}$ 3

Q-3

- (a) For the basis $B = \{v_1, v_2, v_3\}$ of R^3 where $v_1 = (1, 1, 1), v_2 = (1, 1, 0)$ and $v_3 = (1, 0, 0)$. Let $T: R^3 \to R^3$ be a linear transformation such that $(v_1) = (2, -1, 4),$ $T(v_2) = (3, 0, 1), T(v_3) = (-1, 5, 1)$. Find a formula for $T(x_1, x_2, x_3)$ and use it to find T(2, 4, -1).
- (b) 1 (i) Find the Euclidean inner product u.v where $u = (3,1,4,-5), \quad v = (2,2,-4,-3)$
 - (ii) For which values of k are u=(2,1,3) and v=(1,7,k) orthogonal?
 - 2 For u = (2, 1, 3), v = (2, -1, 3) verify Cauchy-Schwarz inequality holds. 3

Q-4

- (a) 1 Find eigen values and eigenvectors of the matrix $A = \begin{bmatrix} 3 & 1 & 4 \\ 0 & 2 & 6 \\ 0 & 0 & 5 \end{bmatrix}$
 - 2 Define Symmetric matrix and Skew-symmetric matrix by giving example. 3
- (b) 1 Translate and rotate the coordinate axes, if necessary, to put the conic $9x^2 4xy + 6y^2 10x 20y = 5$ in standard position. Find the equation of the conic in the final coordinate system.
 - Use Cayley-Hamilton theorem to find A^{-1} fro $A = \begin{bmatrix} 1 & 3 & 7 \\ 4 & 2 & 3 \\ 1 & 2 & 1 \end{bmatrix}$

Q-5

- (a) 1 Using Gram-Schmidt process, construct an orthonormal basis for R^3 , whose basis 4 is the set $\{(1, 1, 1), (1, -2, 1), (1, 2, 3)\}$
 - Show that w = (9, 2, 7) is a linear combination of the vectors u = (1, 2, -1) and v = (6, 4, 2) in R.
- (b) 1 Find the least squares solution of the linear system Ax = b, and find the orthogonal 4 projection of b onto the column space of A.

$$A = \begin{bmatrix} 2 & -2 \\ 1 & 1 \\ 3 & 1 \end{bmatrix}, b = \begin{bmatrix} 2 \\ -1 \\ 1 \end{bmatrix}$$

- Which of the following are subspaces of R^3 ?
 - (i) All the vectors of the form (a, b, c) where b = a + c
 - (ii) All the vectors of the form (a, b, c) where b = a + c + 1

Q-6

- (a) Verify Green's theorem for the function $F = (x^2 + y^2)\hat{\imath} 2xy\hat{\jmath}$, where C is the rectangle in the xy-plane bounded by y = 0, y = b, x = 0 and x = a.
- (b) 1 Verify Stoke's theorem for $F = (x^2 y^2) \hat{\imath} + 2xy\hat{\jmath}$ in the rectangular region x = 4 0, y = 0, x = a, y = b.
 - 2 Find A^{-1} using Gauss-Jordan method if $A = \begin{bmatrix} 1 & 0 & 1 \\ -1 & 1 & 1 \\ 0 & 1 & 0 \end{bmatrix}$ 3

Q-7

- (a) 1 (i) Find $grad(\emptyset) = \log(x^2 + y^2 + z^2)$ at the point (1, 0, -2) 4
 - (ii) Find a unit vector normal to the surface $x^3 + y^3 + 3xyz = 3$ at the point (1, 2, -1)
 - Find the directional derivative of the divergence of $\bar{F}(x,y,z) = xy\hat{\imath} + xy^2\hat{\jmath} + 3$ $z^2\hat{k}$ at the point (2, 1, 2) in the direction of the outer normal to the sphere $x^2 + y^2 + z^2 = 9$.

3

- (b) 1 Show that $\overline{F} = (y^2 z^2 + 3yz 2x)\hat{\imath} + (3xz + 2xy)\hat{\jmath} + (3xy 2xz + 2z)\hat{k}$ is 4 both solenoidal and irrotational.
 - Evaluate $\iint_S \bar{F} \cdot d\bar{s}$, where $\bar{F} = (2x + 3z)\hat{\imath} (xz + y)\hat{\jmath} + (y^2 + 2z)\hat{k}$ and S is the surface of the sphere having center at (3, -1, 2) and radius 3.
