Seat No.: _____

Enrolment No.

GUJARAT TECHNOLOGICAL UNIVERSITY

BE - SEMESTER- III EXAMINATION - SUMMER 2015

Subject Code:130002	Date:06/06/2015
---------------------	-----------------

Subject Name: Advanced Engineering Mathematics

Time: 02.30pm-05.30pm Total Marks: 70

Instructions:

- 1. Attempt all questions.
- 2. Make suitable assumptions wherever necessary.
- 3. Figures to the right indicate full marks.
- Q.1 (a) Attempt the following

(i) Solve
$$[1 + e^{x/y}]dx + e^{x/y}[1 - \frac{x}{y}]dy = 0$$

- (ii) Solve $\frac{dy}{dx} + \frac{y}{x^2} = 6e^{\frac{1}{x}}$
- **(b)** Attempt the following
- (i) Solve $(D^3 7D + 6)y = e^{2x}$
- (ii) Define square wave function and draw its graph 03
- Q.2 (a) Attempt the following
 - (i) Solve $(D^2 + 9)y = \cos 2x + \sin 2x$
 - (ii) Find the ordinary and singular points of $2x^2y'' + 6xy' + (x+3)y = 0$
 - **(b)** Attempt the following
 - (i) Solve the Cauchy-Euler equation $x^2D^2y 3xDy + 5y = x^2\sin(\log x)$ 05
 - (ii) Define Gamma Function and obtain its value for 7. 02

OR

- **(b)** Find the series solution of $(1+x^2)y'' + xy' 9y = 0$ **07**
- Q.3 (a) Find Fourier series for $f(x) = \begin{cases} \pi x, 0 \le x \le 1 \\ \pi (2-x), 1 \le x \le 2 \end{cases}$
 - **(b)** Attempt the following
 - (i) Find Fourier series expansion of $f(x) = |x|, -\pi < x < \pi$
 - (ii) Find Fourier sine series for $f(x) = \pi x x^2$ in $(0, \pi)$.

OR

- Q.3 (a) Attempt the following
 - (i) Obtain Fourier series for $f(x) = x x^2, -1 < x < 1$.
 - (ii) Find a cosine series for $f(x) = e^x, 0 < x < \pi$.
 - Obtain Fourier series to represent $f(x) = \left(\frac{\pi x}{2}\right)^2$ in the interval $0 < x < 2\pi$.
- Q.4 (a) Attempt the following
 - (i) Find the inverse Laplace transform of $\frac{4s+5}{(s-1)^2(s+2)}$
 - (ii) Find the Laplace transform of $e^{4t} \sin 2t \cos t$ 03
 - **(b)** Attempt the following
 - (i) Solve by Laplace transform y'' + 6y = 1, y(0) = 2, y'(0) = 0.

gujara	atstud	ly.com	
<i>U</i> 3	(ii)	Find the convolution of 1*1	02
Q.4	(a)	OR Attempt the following	
	(i)	Find the inverse Laplace transform of $\frac{2-5s}{(s-6)(s^2+11)}$	04
	(ii)	Find Laplace transform of $t^2 \cosh 3t$.	03
	(b)	Attempt the following	
	(i)	Solve by Laplace transform $y' - 4y = 2e^{2t} + e^{4t}$ given that at $t = 0$, $y = 0$.	05
	(ii)	Find Laplace transform of $(t-1)^2 u(t-1)$.	02
Q.5	(a)	Attempt the following	
	(i)	Derive partial differential equation by eliminating constants a and b from $z = (x + a)(y + b)$.	03
	(ii)	Solve by separation of variables method: $u_x + u_y = 2(x + y)u$.	04
	(b)	Use Frobenius method to solve $2x^2y'' - xy' + (1 - x^2)y = 0$.	07
		OR	
Q.5	(a)	Attempt the following	
	(i)	Form the partial differential equation by eliminating the arbitrary functions f and F	03
	(::)	from the relation $y = f(x - at) + F(x + at)$.	0.4

- 03
- **04** (ii) Find the complete integral of pq = 4z.
- Express the function $f(x) = \begin{cases} 1 for |x| \le 1 \\ 0 for |x| \ge 1 \end{cases}$ as a Fourier integral. Hence evaluate $\int_{0}^{\infty} \frac{\sin \lambda \cos \lambda x}{\lambda} d\lambda.$ **(b) 07**
