GUJARAT TECHNOLOGICAL UNIVERSITY

BE - SEMESTER-IV (New) EXAMINATION - WINTER 2015

Subject Code:2140706 Date:28/12/2015
Subject Name: Numerical & Statistical Method for Computer Engineering
Time: 2:30pm to 5:00pm Total Marks: 70

- **Instructions:**
 - Attempt all questions.
 Make suitable assumptions wherever necessary.
 - 3. Figures to the right indicate full marks.
- Q.1 (a) (1) Using method of successive approximation solve the equation 03 $2x \log_{10} x = 7$ correct to four decimal places.
 - (2) Using method of False-position, compute the real root of the equation $x \log_{10} x 1.2 = 0$ correct to four decimals.
 - (b) (1) Discuss briefly the different types of errors encountered in performing 03 numerical calculations.
 - (2) Use Newton-Raphson method to find smallest positive root of $f(x) = x^3 5x + 1 = 0$ correct to four decimals.
- Q.2 (a) Solve this system of linear equations using Jacobi's method in three iterations first check the co-efficient matrix of the following systems is diagonally dominant or not?

$$20x + y - 2z = 17$$
$$2x - 3y + 20z = 25$$
$$3x + 20y - z = -18$$

- (b) (1) State Budan's theorem and hence show that 03 $p(x) = x^5 x^4 3x^3 + 2x + 5$ has one root in [-2, -1].
 - (2) Apply Budan's theorem to find the no. of roots of the equation $x^5 + x^4 4x^3 3x^2 + 3x + 1$ in the interval [-2, -1], [0,1] & [1,2].

OR

- (b) Perform two iterations of the Bairstow method to extract a quadratic factor from the polynomial $p(x) = x^3 + x^2 x + 2 = 0$.
- Q.3 (a) State the Direct & iterative methods to solve system of linear equations. Using Gauss-Seidel method, solve

$$2x_{1} - x_{2} = 7$$

$$-x_{1} + 2x_{2} - x_{3} = 1$$

$$-x_{2} + 2x_{3} = 1$$

- (b) (1) Define ill-conditional linear systems of equations. Determine the 03 condition number of the matrix $A = \begin{bmatrix} 1 & 4 & 9 \\ 4 & 9 & 16 \\ 9 & 16 & 25 \end{bmatrix}$.
 - (2) From the following data find the value of x when y = f(x) = 0.390.

		, ,	` /
X	20	25	30
y = f(x)	0.342	0.423	0.500

OR

Q.3 (a) Obtain the cubic Spline approximation for the function defined by the data.

X	0	1	2	3
f(x)	1	2	33	244

Hence find an estimate of f(2.5).

(b) (1) Fit a straight line for the data.

У	12	15	21	25
X	50	70	100	120

(2) The following table gives distance (in nautical miles) of the visible horizon for the given heights (in feet) above earth's surface. Find the values of y when x = 390 feet.

Height (x)	100	150	200	250	300	350	400
Distance (y)	10.63	13.03	15.04	16.81	18.42	19.90	21.47

- Q.4 (a) (1) Use Euler's method to find an approximation value of y at x = 0.1 for the initial value problem $\frac{dy}{dx} = x y^2$; y(0) = 1.
 - (2) Find the least squares approximations of second degree for the following data

data										
х	-2	-1	0	1	2					
y = f(x)	15	1	1	3	19					

(b) Solve the initial value problem $\frac{dy}{dx} = -2xy^2$; y(0) = 1 with h = 0.2 for y(0.2) using Runge-Kutta fourth order method.

OR

Q.4 (a) (1) Evaluate $\int_{1}^{5} \log_{10} x \, dx$ taking 8 subintervals by Trapezoidal rule.

(2) Evaluate
$$\int_{0}^{1} \frac{dx}{1+x}$$
 using Simpson's $\frac{3}{8}$ rule.

(b) State different predictor-corrector method. For the initial value problem $\frac{dy}{dx} = y + x^2$; y(0) = 1, use Milne's prediction-corrector method to find y(0.8) by taking h = 0.2 from following data

`	, ,		C		
	x	0	0.2	0.4	0.6
	у	1	1.2242	1.5155	1.9063

Q.5 (a) From the following data calculate moments about (i) Assumed mean 25 07 (ii) Actual mean (iii) zero.

(ii) Hettar mean (iii) 2010:									
	Variable	0 - 10	10 - 20	20 - 30	30 - 40				
	Frequency	1	3	4	2				

04

07

03

(b) Explain co-relation, co-relation Types, co-relation co-efficient. Also state the methods to find correlation between two variables. Find the correlation co-efficient between the serum diastolic blood pressure & serum cholesterol levels of 10 randomly selected persons.

Persons	1	2	3	4	5	6	7	8	9	10
Cholesterol	307	259	341	317	274	416	267	320	274	336
Diastolic	80	75	90	74	75	110	70	85	88	78
B.P.										

OR

- Q.5 (a) The quantities of water (in liters) supplied by municipal corporation on ten consecutive days in certain area are shown below: 218.2, 199.7, 207.3, 185.4, 213.7, 184.7, 179.5, 194.4, 224.3, 203.5. Evaluate the mean & the first four central moments of the water (in liters) of that area.
 - (b) State the formula for two regression equations. Also give algorithm for the following data find the line of regression of y on x.

х	1.53	1.78	2.60	2.95	3.42
у	33.5	36.3	40.0	45.8	53.5

07