Seat No. : \qquad

12D-102

May-2015

B.B.A.Sem.-II

CC-112 : Business Mathematics

1. (a) State Multiplication rule of differentiation and using it find $\frac{\mathrm{dy}}{\mathrm{d} x}$ of $\mathrm{y}=x^{11} \log x$. 4 OR
If demand function of a commodity is $\mathrm{p}=40-3 x$, then find Marginal Revenue and Average Revenue.
(b) Find $\frac{\mathrm{dy}}{\mathrm{d} x}$ of following:
(1) $y=2+\frac{3}{4+\frac{1}{x}}$
(2) $y=5^{2 x^{2}-7 x+1}$
OR

Find $\frac{\mathrm{dy}}{\mathrm{d} x}$ of following :
(1) $\mathrm{y}=\log \left(x^{2}+\mathrm{a}^{2}\right)$
(2) $\mathrm{y}=\frac{x+7}{x-3}$
(c) The demand function is $x=4(9-\sqrt{\mathrm{p}})$, find the elasticity of demand at $\mathrm{p}=4$.

OR
Find $\frac{\mathrm{dy}}{\mathrm{d} x}$ of $\mathrm{y}=4 x^{2}+5 x+1$ using definition.
2. (a) Find $\frac{\mathrm{d}^{2} \mathrm{y}}{\mathrm{d} x^{2}}$ of $\mathrm{y}=\mathrm{e}^{x}$.

Find $\frac{\mathrm{d}^{2} \mathrm{y}}{\mathrm{d} x^{2}}$ of $\mathrm{y}=\frac{x+1}{x-1}$.
(b) Find Maximum and Minimum values of $\mathrm{f}(x)=x^{3}+x^{2}-5 x+7$.

OR
The demand function is $\mathrm{p}=12-4 x$. Find the value of x so that total revenue is maximum.
(c) If $\mathrm{f}(x, y)=x^{3}+x^{2} \mathrm{y}+x \mathrm{y}^{2}+\mathrm{y}^{3}$, then find $\frac{\partial^{2} \mathrm{f}}{\partial x^{2}}, \frac{\partial^{2} \mathrm{f}}{\partial \mathrm{y}^{2}}, \frac{\partial^{2} \mathrm{f}}{\partial x \partial \mathrm{y}}, \frac{\partial^{2} \mathrm{f}}{\partial \mathrm{y} \partial \mathrm{x}}$.

OR
If $u=x^{3}-3 x y^{2}, r=3 x^{2} y-y^{3}$, then prove that $\frac{\partial^{2} u}{\partial x^{2}}+\frac{\partial^{2} u}{\partial y^{2}}=\frac{\partial^{2} r}{\partial x^{2}}+\frac{\partial^{2} r}{\partial y^{2}}$.
3. (a) Define following matrices with illustrations:
(i) Row Matrix
(ii) Rectangle Matrix

OR
State difference between symmetric and skew symmetric matrix.
(b) If $A=\left[\begin{array}{ll}4 & 1 \\ 2 & 3\end{array}\right]$, then find matrix B such that, $A+2 B=A^{2}$.

OR

If $A=\left[\begin{array}{ccc}2 & -1 & 3 \\ -1 & 0 & 1\end{array}\right], B=\left[\begin{array}{cc}3 & 2 \\ -1 & 7 \\ -5 & 0\end{array}\right]$, then find $A B$ and $B A$ if possible.
(c) If $A=\left[\begin{array}{cc}3 & -1 \\ 2 & 5\end{array}\right]$, then prove that, $A(\operatorname{adj} . A)=|A| I_{2}$.

OR

Solve following equations using inverse of a Matrix.

$$
x+y+2=3,2 x-y-2=3, x-y+2=9
$$

4. (a) Find simple interest and amount on ₹ 20,000 for 7 years at 10% rate of interest per annum.

OR

In what time will ₹ 12,000 amount to ₹ 24,000 at 6% p.a. simple interest?
(b) What is nominal rate of interest corresponding to effective rate of 10% if it is compounded half yearly?

Find compound interest on ₹ 50,000 at 5% p.a. at end of 2 years if interest is calculated (i) half yearly, (ii) quarterly.
(c) A man deposit ₹ 10,000 on $31^{\text {st }}$ December 2006. What amount he receive on $31^{\text {st }}$ December, 2018, if the interest is 10% compounded annually?

A person deposit ₹ 5000 in beginning of every year. If the rate of interest is 14% p.a. compounded annually, then find amount after 10 years.
5. Answer the following questions :
(1) State division rule of derivative.
(2) If $\mathrm{f}(x)=x^{2}-3 x+1$, then find $\mathrm{f}^{\prime}(-1)$.
(3) If $y=\log x$, then find $\frac{d^{2} y}{d x^{2}}$.
(4) Write a condition to have a minimum value of a function.
(5) If $\mathrm{f}(x)=x^{2} \mathrm{y}+x \mathrm{y}^{2}$, then find $\frac{\partial \mathrm{f}}{\partial x}$.
(6) If $\mathrm{f}(x)=\mathrm{e}^{-3 x}$, then find $\frac{\mathrm{d}^{2} \mathrm{y}}{\mathrm{d} x^{2}}$.
(7) Define: Utility.
(8) Write type of $\mathrm{A}=\left[\begin{array}{llll}3 & -1 & 7 & 4\end{array}\right]$
(9) Define : Null matrix.
(10) If A : $4 \times x$ and B : 2×3 and AB is possible, then find value of x.
(11) Is $A=\left[\begin{array}{ll}3 & 2 \\ 1 & 4\end{array}\right]$ a non-singular Matrix or Not?
(12) If $A=\left[\begin{array}{cc}-5 & 7 \\ 0 & -3\end{array}\right]$, then find adj. (A).
(13) Give formula for obtaining depreciated value.
(14) Write formula for present value of annuity due.

